FEATURES

- SUPPLY VOLTAGE:

Vcc $=2.7$ to 3.3 V

- CIRCUIT CURRENT:

ICC $=23.0 \mathrm{~mA}$ TYP at $\mathrm{VCC}=3.0 \mathrm{~V}$

- POWER GAIN:
$\mathrm{GP}=19.0 \mathrm{~dB}$ TYP at $\mathrm{f}=0.9 \mathrm{GHz}$
GP $=21.0 \mathrm{~dB}$ TYP at $\mathrm{f}=1.9 \mathrm{GHz}$
GP $=22.0 \mathrm{~dB}$ TYP at $\mathrm{f}=2.4 \mathrm{GHz}$
- MEDIUM OUTPUT POWER:
$\mathrm{Po}(1 \mathrm{~dB})=+8.0 \mathrm{dBm}$ TYP at $\mathrm{f}=0.9 \mathrm{GHz}$
$\mathrm{PO}(1 \mathrm{~dB})=+7.0 \mathrm{dBm}$ TYP at $\mathrm{f}=1.9 \mathrm{GHz}$
$\mathrm{Po}(1 \mathrm{~dB})=+7.0 \mathrm{dBm}$ TYP at $\mathrm{f}=2.4 \mathrm{GHz}$
- UPPER LIMIT OPERATING FREQUENCY:
$\mathrm{fu}=4.0 \mathrm{GHz}$ TYP at 3 dB bandwidth (Standard value)
- HIGH-DENSITY SURFACE MOUNTING:

6 -pin super minimold package ($2.0 \times 1.25 \times 0.9 \mathrm{~mm}$)

DESCRIPTION

NEC's UPC8181TB is a silicon Monolithic Microwave Integrated Circuit designed as an amplifier for mobile communications. This IC operates at 3 volts. The medium output power is suitable for RF-TX of mobile communication systems.
This IC is manufactured using NEC's 30 GHz fmax UHSO (Ultra High Speed process) silicon bipolar process. This process uses direct silicon nitride passivation film and gold electrodes. These materials can protect the chip surface from pollution and prevent corrosion/migration. This IC has excellent performance, uniformity, and reliability.
NEC's stringent quality assurance and test procedures ensure the highest reliability and performance.

APPLICATIONS

- Buffer amplifiers for 1.9 GHz to 2.4 GHz mobile communication systems.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=\right.$ Vout $\left.=3.0 \mathrm{~V}, \mathrm{Zs}=\mathrm{ZL}=50 \Omega\right)$

PART NUMBER PACKAGE OUTLINE				$\begin{aligned} & \text { UPC8181TB } \\ & \text { S06 } \end{aligned}$		
SYMBOLS	PARAMETERS AND CONDITIONS		UNITS	MIN	TYP	MAX
Icc	Circuit Current (no signal)		mA	-	23.0	30.0
Gp	Power Gain,	$\begin{aligned} & \mathrm{f}=0.9 \mathrm{GHz} \\ & \mathrm{f}=1.9 \mathrm{GHz} \\ & \mathrm{f}=2.4 \mathrm{GHz} \end{aligned}$	dB	$\begin{aligned} & \hline 16.0 \\ & 18.0 \\ & 19.0 \end{aligned}$	$\begin{aligned} & \hline 19.0 \\ & 21.0 \\ & 22.0 \end{aligned}$	$\begin{aligned} & \hline 22.0 \\ & 24.0 \\ & 25.0 \end{aligned}$
NF	Noise Figure,	$\begin{aligned} & \mathrm{f}=0.9 \mathrm{GHz} \\ & \mathrm{f}=1.9 \mathrm{GHz} \\ & \mathrm{f}=2.4 \mathrm{GHz} \end{aligned}$	dB	-	$\begin{aligned} & 4.5 \\ & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \\ & 6.0 \end{aligned}$
fu	Upper Limit Operating Frequency, 3 dB down below from gain at $\mathrm{f}=0.1 \mathrm{GHz}$		GHz	-	4.0	-
ISL	Isolation,	$\begin{aligned} & \mathrm{f}=0.9 \mathrm{GHz} \\ & \mathrm{f}=1.9 \mathrm{GHz} \\ & \mathrm{f}=2.4 \mathrm{GHz} \end{aligned}$	dB	$\begin{aligned} & 28.0 \\ & 27.0 \\ & 26.5 \end{aligned}$	$\begin{aligned} & 33.0 \\ & 32.0 \\ & 31.5 \end{aligned}$	-

ELECTRICAL CHARACTERISTICS (cont.)
$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=\mathrm{Vout}=3.0 \mathrm{~V}, \mathrm{Zs}=\mathrm{ZL}=50 \Omega\right)$

PART NUMBER PACKAGE OUTLINE			$\begin{aligned} & \text { UPC8181TB } \\ & \text { S06 } \end{aligned}$		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
$\mathrm{Po}(1 \mathrm{~dB})$	1 dB Gain Compression Output Level, $\begin{aligned} & \mathrm{f}=0.9 \mathrm{GHz} \\ & \mathrm{f}=1.9 \mathrm{GHz} \\ & \mathrm{f}=2.4 \mathrm{GHz} \end{aligned}$	dBm	$\begin{aligned} & +5.5 \\ & +4.5 \\ & +4.5 \end{aligned}$	$\begin{aligned} & +8.0 \\ & +7.0 \\ & +7.0 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$
Po(SAT)	Saturated Output Power Level, $\begin{aligned} & f=0.9 \mathrm{GHz}, \mathrm{P} \ln =-5 \mathrm{dBm} \\ & \mathrm{f}=1.9 \mathrm{GHz}, \mathrm{P} \mathrm{IN}=-5 \mathrm{dBm} \\ & \mathrm{f}=2.4 \mathrm{GHz}, \mathrm{PIN}=-5 \mathrm{dBm} \end{aligned}$	dBm	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & +9.5 \\ & +9.0 \\ & +9.0 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$
RLin	Input Return Loss, $f=0.9 \mathrm{GHz}$ $f=1.9 \mathrm{GHz}$ $f=2.4 \mathrm{GHz}$	dB	$\begin{aligned} & 4.5 \\ & 7.5 \\ & 8.0 \end{aligned}$	$\begin{gathered} \hline 7.5 \\ 10.5 \\ 11.0 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$
RLout	$\begin{array}{ll} \hline \text { Output Return Loss, } & f=0.9 \mathrm{GHz} \\ & f=1.9 \mathrm{GHz} \\ & f=2.4 \mathrm{GHz} \end{array}$	dB	$\begin{aligned} & \hline 6.0 \\ & 7.0 \\ & 9.0 \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 10.0 \\ 12.0 \end{gathered}$	

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOLS	PARAMETERS	UNITS	RATINGS
Vcc	Supply Voltage 2	V	3.6
Icc	Total Cicuit Current	mA	60
Pd	Power Dissipation 3	mW	270
TA	Operating Ambient Temperature	${ }^{\circ} \mathrm{C}$	-40 to +85
TsTG	Storage Temperature	${ }^{\circ} \mathrm{C}$	-55 to +150
PIn	Input Power ${ }^{4}$	dBm	+10

Notes:

1. Operation in excess of any one of these conditions may result in permanent damage.
2. $\mathrm{TA}=25^{\circ} \mathrm{C}$, pins 4 and 6 .
3. Mounted on a double-sided copper clad $50 \times 50 \times 1.6 \mathrm{~mm}$ epoxy glass PWB, TA $=+85^{\circ} \mathrm{C}$.
4. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

RECOMMENDED

OPERATING CONDITIONS

SYMBOLS	PARAMETERS	UNITS	MIN	TYP	MAX
Vcc	Supply Voltage 1	V	2.7	3.0	3.3

Note:

1. Same voltage applied to pins 4 and 6

TYPICAL PERFORMANCE CURVES (Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

CIRCUIT CURRENT vs. SUPPLY VOLTAGE

CIRCUIT CURRENT vs.

 OPERATING AMBIENT TEMPERATURE

ISOLATION vs. FREQUENCY

OUTPUT POWER vs. INPUT POWER

OUTPUT POWER vs. INPUT POWER

INPUT RETURN LOSS, OUTPUT RETURN LOSS vs. FREQUENCY

OUTPUT POWER vs. INPUT POWER

TYPICAL PERFORMANCE CURVES (Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

THIRD ORDER INTERMODULATION DISTORTION vs. OUTPUT POWER OF EACH TONE

THIRD ORDER INTERMODULATION DISTORTION vs. OUTPUT POWER OF EACH TONE

THIRD ORDER INTERMODULATION DISTORTION vs. OUTPUT POWER OF EACH TONE

TYPICAL SCATTERING PARAMETERS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

S11

S22
$\mathrm{Vcc}=$ Vout $=3.0 \mathrm{~V}, \mathrm{Icc}=23.0 \mathrm{~mA}$

FREQUENCY	S11		S21		S12		S22		
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG	K
0.1	0.452	-2.7	9.078	-2.0	0.020	4.3	0.338	-1.6	1.89
0.2	0.467	-5.7	9.098	-4.9	0.021	4.2	0.346	-2.1	1.73
0.3	0.470	-7.5	9.143	-6.9	0.021	8.2	0.344	-1.0	1.72
0.4	0.460	-9.3	9.237	-10.1	0.021	9.8	0.335	-2.7	1.75
0.5	0.438	-11.5	9.284	-11.9	0.021	11.4	0.328	-4.8	1.84
0.6	0.415	-14.7	9.442	-14.6	0.022	8.1	0.337	-7.5	1.73
0.7	0.397	-18.6	9.670	-17.0	0.022	11.5	0.350	-7.9	1.72
0.8	0.395	-22.4	9.897	-19.7	0.022	16.3	0.354	-6.8	1.69
0.9	0.399	-25.6	10.166	-22.7	0.023	14.5	0.342	-6.0	1.56
1.0	0.404	-28.1	10.496	-26.0	0.022	13.4	0.331	-7.9	1.60
1.1	0.396	-29.0	10.903	-29.0	0.023	18.0	0.332	-10.8	1.48
1.2	0.394	-28.5	11.329	-32.8	0.025	16.6	0.353	-13.4	1.33
1.3	0.385	-28.0	11.895	-37.9	0.025	17.4	0.376	-14.3	1.26
1.4	0.368	-28.8	12.145	-42.4	0.024	22.0	0.374	-15.0	1.28
1.5	0.347	-29.5	12.356	-47.6	0.025	24.3	0.361	-16.3	1.28
1.6	0.335	-30.9	12.670	-51.8	0.026	20.6	0.356	-19.3	1.22
1.7	0.327	-31.5	12.966	-56.4	0.024	21.4	0.356	-22.0	1.29
1.8	0.328	-31.2	13.410	-61.4	0.026	23.2	0.366	-23.9	1.17
1.9	0.327	-29.4	13.722	-66.8	0.027	27.5	0.367	-25.6	1.11
2.0	0.325	-29.4	14.151	-72.3	0.026	24.6	0.369	-28.5	1.11
2.1	0.316	-28.5	14.412	-78.1	0.028	26.4	0.363	-31.7	1.05
2.2	0.295	-29.4	14.747	-84.1	0.027	26.5	0.361	-35.4	1.08
2.3	0.288	-30.8	15.144	-90.3	0.029	27.5	0.359	-37.1	1.02
2.4	0.291	-34.1	15.463	-97.4	0.029	27.1	0.346	-39.0	1.01
2.5	0.303	-38.3	15.264	-104.6	0.029	27.7	0.323	-40.6	1.04
2.6	0.317	-41.1	15.137	-112.6	0.028	25.5	0.303	-43.1	1.09
2.7	0.335	-41.3	14.774	-119.8	0.029	25.5	0.294	-43.9	1.07
2.8	0.349	-41.0	14.176	-127.7	0.031	25.0	0.299	-43.0	1.03
2.9	0.347	-39.4	13.710	-133.7	0.029	32.9	0.304	-41.3	1.09
3.0	0.345	-43.2	12.808	-139.8	0.029	24.8	0.317	-44.9	1.15
3.1	0.341	-45.4	12.313	-146.0	0.031	28.9	0.325	-46.7	1.13
3.2	0.331	-47.9	11.587	-149.3	0.029	31.6	0.318	-48.7	1.25
3.3	0.323	-49.8	11.003	-154.5	0.031	31.2	0.315	-52.1	1.27
3.4	0.311	-52.1	10.638	-157.7	0.031	29.5	0.307	-56.1	1.32
3.5	0.302	-52.6	10.228	-162.0	0.029	32.5	0.302	-60.0	1.44
3.6	0.289	-54.9	9.985	-166.5	0.030	31.4	0.303	-63.7	1.47
3.7	0.266	-56.5	9.543	-170.1	0.030	39.6	0.301	-65.1	1.54
3.8	0.253	-61.5	9.184	-174.5	0.031	34.1	0.294	-67.5	1.55
3.9	0.238	-65.6	8.816	-177.7	0.030	36.2	0.275	-68.8	1.71
4.0	0.238	-70.7	8.488	178.2	0.032	38.9	0.270	-71.0	1.70
4.1	0.244	-74.0	8.186	174.3	0.032	37.0	0.266	-75.1	1.75

PIN FUNCTIONS (Pin Voltage is measured at $\mathrm{Vcc}=3.0 \mathrm{~V}$)

Pin No.	Pin Name	Applied Voltage	Pin Voltage	Description	Equivalent Circuit
1	INPUT	-	0.99	Signal input pin. An internal matching circuit, configured with resistors, enables 50Ω connection over a wide band. A multi- feedback circuit is designed to cancel the deviations of hFE and resistance. This pin must be coupled to signal source with capacitor for DC cut.	
$\begin{aligned} & 2 \\ & 3 \\ & 5 \end{aligned}$	GND	0	-	GND pin. This pin should be connected to the system ground with minimuim inductance. Ground pattern on the board should be formed as wide as possible. All the ground pins must be connected together with wide ground pattern to decrease impedance difference.	
4	OUTPUT	Voltage as same as Vcc through external inductor	-	Signal output pin. The inductor must be attached between Vcc and output pins to supply current to the internal output transistors.	
6	Vcc	2.7 to 3.3	-	Power supply pin, which biases the internal input transistor. This pin should be externally equipped with bypass capacitor to minimize its impedance.	

APPLICATION EXAMPLE (Digital Cellular Telephone)

OUTLINE DIMENSIONS (Units in mm)

6-PIN SUPER MINIMOLD

LEAD CONNECTIONS
(Top View)

(Bottom View)

1. INPUT
2. GND
3. GND
4. OUTPUT
5. GND
6. Vcc

ORDERING INFORMATION

PART NUMBER	PACKAGE	QUANTITY
UPC8181TB-E3-A	6-pin super minimold	3kpcs/Reel

Note: Embossed tape 8 mm wide. Pins 1,2,3 face tape perforation side.

TEST CIRCUIT

Life Support Applications

APPLICATION BOARD

1. double sided copper clad GETEK board ($H=.028, \varepsilon_{r}=4.2$.)
2. Back side: GND pattern.
3. Solder plated on patterns.
4. o O: Through holes.

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix -A indicates that the device is Pb -free. The -AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration contained in CEL devices	
Lead (Pb)	<1000 PPM	-A	-AZ
Mercury	<1000 PPM	Not Detected	Not Detected
Cadmium	<100 PPM	Not Detected	
Hexavalent Chromium	<1000 PPM	Not Detected	
PBB	<1000 PPM	Not Detected	
PBDE	<1000 PPM	Not Detected	

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.
See CEL Terms and Conditions for additional clarification of warranties and liability.

